THIN PLATE SPLINES FOR TRANSFINITE INTERPOLATION AT CONCENTRIC CIRCLES
نویسندگان
چکیده
منابع مشابه
Thin-Plate Splines
2 The Calculus of Variations 2 2.1 Functionals of f and f ′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Functionals of f , f ′, and f ′′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.3 Cubic Splines and Green’s Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.4 Euler-Lagrange Equations for Multi...
متن کاملThin plate regression splines
I discuss the production of low rank smoothers for d ≥ 1 dimensional data, which can be fitted by regression or penalized regression methods. The smoothers are constructed by a simple transformation and truncation of the basis that arises from the solution of the thinplate spline smoothing problem, and are optimal in the sense that the truncation is designed to result in the minimum possible pe...
متن کاملSubdivision Schemes for Thin Plate Splines
Thin plate splines are a well known entity of geometric design. They are defined as the minimizer of a variational problem whose differential operators approximate a simple notion of bending energy. Therefore, thin plate splines approximate surfaces with minimal bending energy and they are widely considered as the standard “fair” surface model. Such surfaces are desired for many modeling and de...
متن کاملFingerprint Mosaicing Using Thin Plate Splines
We discuss a fingerprint mosaicing scheme to construct a composite fingerprint image using multiple impressions of the same finger. The composite image is expected to contain more information (e.g., minutiae) compared to the individual impressions thereby improving matching accuracy. The novelty of the proposed algorithm lies in its ability to account for the elastic deformation present in cons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling and Analysis
سال: 2013
ISSN: 1392-6292,1648-3510
DOI: 10.3846/13926292.2013.807317